jueves, 21 de noviembre de 2013

La estructura de la materia, Átomo.





LA ESTRUCTURA DE LA MATERIA.

La materia consiste de partículas extremadamente pequeñas agrupadas juntas para formar el átomo. 
Hay una  90 ocurrencias naturales de estas agrupaciones de partículas llamadas elementos. Estos elementos fueron agrupados en la tabla periódica de los elementos en secuencia de acuerdo a sus números atómicos y peso atómico. 



Tabla Periodica.

Hay además 23 elementos hechos por el hombre que no ocurren en la naturaleza, por lo que al final son unos 113 elementos conocidos hasta la fecha. Estos elementos no pueden cambiarse por procesos químicos. Ellos solo pueden ser cambiados por reacción nuclear o atómica, sin embargo pueden ser combinados para producir el incontable número de compuestos con los que tropezamos día a día.


  

ÁTOMO.




Átomo de Carbono
El átomo es un constituyente de la materia ordinaria, con propiedades químicas bien definidas, formado a su vez por constituyentes más elementales sin propiedades químicas bien definidas. Cada elemento químico está formado por átomos del mismo tipo (con la misma estructura electrónica básica), y que no es posible dividir mediante procesos químicos.
Los átomos se clasifican de acuerdo al número de protones y neutrones que contenga su núcleo. El número de protones o número atómico determina su elemento químico, y el número de neutrones determina su isótopo. Un átomo con el mismo número de protones que de electrones es eléctricamente neutro. Si por el contrario posee un exceso de protones o de electrones, su carga neta es positiva o negativa, y se denomina ion.


Modelos atómicos más conocidos:


Modelo de Thomson:


Átomo de Thomson.
Para explicar la formación de iones, positivos y negativos, y la presencia de los electrones dentro de la estructura atómica, Joseph John Thomson ideó un átomo parecido a un pastel de frutas. Una nube positiva que contenía las pequeñas partículas negativas (los electrones) suspendidos en ella. El número de cargas negativas era el adecuado para neutralizar la carga positiva. En el caso de que el átomo perdiera un electrón, la estructura quedaría positiva; y si ganaba, la carga final sería negativa. De esta forma, explicaba la formación de iones; pero dejó sin explicación la existencia de las otras radiaciones.


Átomo de Dalton.





Modelo de Dalton: 

Fue el primer modelo atómico con bases científicas, fue formulado en 1803 por John Dalton, quien imaginaba a los átomos como diminutas esferas.




Modelo de Rutherford:

Átomo de Rutherford.

Este modelo fue desarrollado por el físico Ernest Rutherford; representa un avance sobre el modelo de Thomson, ya que mantiene que el átomo se compone de una parte positiva y una negativa, sin embargo, a diferencia del anterior, postula que la parte positiva se concentra en un núcleo, el cual también contiene virtualmente toda la masa del átomo, mientras que los electrones se ubican en una corteza orbitando al núcleo en órbitas circulares o elípticas con un espacio vacío entre ellos. A pesar de ser un modelo obsoleto, es la percepción más común del átomo del público no científico. 











miércoles, 20 de noviembre de 2013

Semiconductores. 



SEMICONDUCTORES.


Ejemplo de semiconductor.
Los materiales se comportan de modo diferente según su capacidad para transportar la corriente eléctrica. Basándose en este comportamiento, los diferentes tipos de materiales existentes se pueden clasificar en conductores, aislantes y semiconductores, que constituyen la base de los dispositivos electrónicos.
Son materiales que presentan unas características intermedias entre los conductores y los aislantes. En condiciones normales son aislantes y no dejan pasar la corriente eléctrica, pero bajo ciertas circunstancias, si reciben energía externa, pueden pasar a ser conductores.



Los materiales semiconductores pueden ser intrínsecos o extrínsecos:


Semiconductores intrínsecos:
Los principales materiales que presentan propiedades semiconductoras son elementos simples, como el silicio (Si) y el germanio (Ge).
Estos elementos son tetravalentes, es decir, tienen cuatro electrones de valencia, y forman enlaces covalentes en los que comparten estos electrones con los átomos vecinos. El enlace covalente mantiene «anclados» a los electrones e impide su desplazamiento, por lo que da lugar a materiales que no pueden conducir la corriente eléctrica.


Semiconductores extrínsecos:
Los semiconductores intrínsecos presentan una conductividad muy baja, por lo que se han buscado métodos para aumentar su valor. Esto ha dado lugar al desarrollo de los semiconductores extrínsecos.También podemos conseguir que un material semiconductor se convierta en conductor aportándole las cargas eléctricas necesarias para que pueda conducir la corriente eléctrica. Esto se logra introduciendo impurezas en el material, mediante un proceso denominado dopado, y en este caso hablamos de conducción extrínseca.





Conductores, Aislantes.


CONDUCTOR ELÉCTRICO
 

Conductor eléctrico de cobre.
Un conductor eléctrico es un material que ofrece poca resistencia al movimiento de carga eléctrica.
Son materiales cuya resistencia al paso de la electricidad es muy baja. Los mejores conductores eléctricos son metales, como el cobre, el oro, el hierro y el aluminio, y sus aleaciones, aunque existen otros materiales no metálicos que también poseen la propiedad de conducir la electricidad, como el grafito o las disoluciones y soluciones salinas (por ejemplo, el agua de mar) o cualquier material en estado de plasma.






Tabla de Conductores:




 
AISLANTE.


EL aislante hace referencia a cualquier material que impide la transmisión de la energía en cualquiera de sus formas: con masa que impide el transporte de energía.


Cinta aislante eléctrica.

El aislamiento eléctrico se produce cuando se cubre un elemento de una instalación eléctrica con un material que no es conductor de la electricidad, es decir, un material que resiste el paso de la corriente a través del elemento que alberga y lo mantiene en su desplazamiento a lo largo del semiconductor. Dicho material se denomina aislante eléctrico.
La diferencia de los distintos materiales es que los aislantes son materiales que presentan gran resistencia a que las cargas que lo forman se desplacen y los conductores tienen cargas libres y que pueden moverse con facilidad.





Tabla de aislantes:






Conductividad, Resistividad, Resistencia, Conductancia.




CONDUCTIVIDAD ELÉCTRICA.


Medidor de conductividad elétrica.
La conductividad eléctrica es la medida de la capacidad de un material que deja pasar la corriente eléctrica, su aptitud para dejar circular libremente las cargas eléctricas. La conductividad depende de la estructura atómica y molecular del material, los metales son buenos conductores porque tienen una estructura con muchos electrones con vínculos débiles y esto permite su movimiento. La conductividad también depende de otros factores físicos del propio material y de la temperatura.

La conductividad es la inversa de la resistividad, por tanto σ=1/p, y su unidad es el S/m (siemens por metro) o Ω-1·m-1. Usualmente la magnitud de la conductividad (σ) es la proporcionalidad entre el campo eléctrico E y la densidad de corriente de conducción J:


J =  σE

Los mecanismos de conductividad difieren entre los tres estados de la materia. Por ejemplo en los sólidos los átomos como tal no son libres de moverse y la conductividad se debe a los electrones. En los metales existen electrones cuasi-libres que se pueden mover muy libremente por todo el volumen, en cambio en los aislantes, muchos de ellos son sólidos iónicos. 



  
RESISTIVIDAD


La resistividad es la resistencia eléctrica específica de cada material para oponerse al paso de una corriente eléctrica. Se designa por la letra griega rho minúscula (ρ) y se mide en ohmios por metro (Ω•m).

p = R.S / l


en donde R es la resistencia en ohms, S la sección transversal en m² y l la longitud en m. Su valor describe el comportamiento de un material frente al paso de corriente eléctrica, por lo que da una idea de lo buen o mal conductor que es. Un valor alto de resistividad indica que el material es mal conductor mientras que uno bajo indicará que es un buen conductor.


TABLA DE RESISTIVIDADES DE ALGUNOS MATERIALES:





RESISTENCIA.



Resistencia 1000

Se le llama resistencia eléctrica a la igualdad de oposición que tienen los electrones para desplazarse a través de un conductor. La unidad de resistencia en el Sistema Internacional es el ohmio, que se representa con la letra griega omega (Ω), en honor al físico alemán George Ohm, quien descubrió el principio que ahora lleva su nombre.

Además, de acuerdo con la ley de Ohm la resistencia de un material puede definirse como la razón entre la diferencia de potencial eléctrico y la corriente en que atraviesa dicha resistencia, así:



R = V / I


Donde R es la resistencia en ohmios, V es la diferencia de potencial en voltios e I es la intensidad de corriente en amperios.






 CONDUCTANCIA.


Se denomina conductancia eléctrica (G) a la propiedad de transportar mover o desplazar uno o más electrones en su cuerpo; es decir, que la conductancia es la propiedad inversa de la resistencia eléctrica.
No debe confundirse con conducción, que es el mecanismo mediante el cual la carga fluye, o con la conductividad, que es la conductancia específica de un material.
La unidad de medida de la conductancia en el Sistema internacional de unidades es el siemens.
Este parámetro es especialmente útil a la hora de tener que manejar valores de resistencia muy pequeños, como es el caso de los conductores eléctricos.


Como ya se mencionó, la relación entre la conductancia y la resistencia está dada por:

G = 1 / R = I / V
donde:
G es la conductancia (viene del inglés gate),
R es la resistencia en ohmios,
I es la corriente en amperios,
V es el voltaje en voltios.
(Nota: Esta relación solo es aplicable en el caso de circuitos puramente resistivos.)

Para el caso reactivo, la conductancia se puede relacionar con la susceptancia y la admitancia mediante la siguiente ecuación:

Y = G + jB
o por:

G = Re ( Y )
donde:
Y es la admitancia,
j es la unidad imaginaria,
B es la susceptancia.









Mólecula, Cargas eléctricas.


MÓLECULA.



En química, se llama mólecula a un conjunto de al menos dos átomos enlazados covalentemente que forman un sistema estable y eléctricamente neutro.

Mólecula de Agua.

Las moléculas rara vez se encuentran sin interacción entre ellas, salvo en gases enrarecidos y en los gases nobles. Así, pueden encontrarse en redes cristalinas, como el caso de las moléculas de H2O en el hielo o con interacciones intensas pero que cambian rápidamente de direccionalidad, como en el agua líquida. En orden creciente de intensidad, las fuerzas intermoleculares más relevantes son: las fuerzas de Van der Waals y los puentes de hidrógeno. La dinámica molecular es un método de simulación por computadora que utiliza estas fuerzas para tratar de explicar las propiedades de las moléculas.






CARGAS ELECTRICAS.


La carga eléctrica es una propiedad física intrínseca de algunas partículas subatómicas que se manifiesta mediante fuerzas de atracción y repulsión entre ellas. La materia cargada eléctricamente es influida por los campos electromagnéticos, siendo a su vez, generadora de ellos. La denominada interacción electromagnética entre carga y campo eléctrico es una de las cuatro interacciones fundamentales de la física. Desde el punto de vista del modelo estándar la carga eléctrica es una medida de la capacidad que posee una partícula para intercambiar fotones.


Protones: 

En física, el protón es una partícula subatómica con una carga eléctrica elemental positiva 1 (1,6 × 10-19 C). Igual en valor absoluto y de signo contrario a la del electrón, y una masa 1.836 veces superior a la de un electrón. Experimentalmente, se observa el protón como estable, con un límite inferior en su vida media de unos 1035 años, aunque algunas teorías predicen que el protón puede desintegrarse en otras partículas.
En un átomo, el número de protones en el núcleo determina las propiedades químicas del átomo y qué elemento químico es.


Neutrones: 

El neutrón es una partícula subatómica, un nucleón, sin carga neta, presente en el núcleo atómico de prácticamente todos los átomos, excepto el protio. Aunque se dice que el neutrón no tiene carga, en realidad está compuesto por tres partículas fundamentales cargadas llamadas quarks, cuyas cargas sumadas son cero.
Fuera del núcleo atómico, los neutrones son inestables, teniendo una vida media de 15 minutos; cada neutrón libre se descompone en un electrón, un antineutrino y un protón. Su masa es muy similar a la del protón, aunque ligeramente mayor.

El protón y el neutrón, en conjunto, se conocen como nucleones, ya que conforman el núcleo de los átomos.

Electrones:

El electrón, comúnmente representado por el símbolo: e, es una partícula subatómica con una carga eléctrica elemental negativa. Un electrón no tiene componentes o subestructura conocidos, en otras palabras, generalmente se define como una partícula elemental.Tiene una masa que es aproximadamente 1836 veces menor con respecto a la del protón. Su antipartícula es denominada positrón: es idéntica excepto por el hecho de que tiene cargas entre ellas, la eléctrica de signo opuesto. Cuando un electrón colisiona con un positrón, las dos partículas pueden resultar totalmente aniquiladas y producir fotones de rayos gamma.






Modelo matemático, Unidades en el sistema internacional,Unidades dimesionales.



MODELO MATEMÁTICO.

En ciencias aplicadas, un modelo matemático es uno de los tipos de modelos científicos que emplea algún tipo de formulismo matemático para expresar relaciones, proposiciones sustantivas de hechos, variables, parámetros, entidades y relaciones entre variables y/o entidades u operaciones, para estudiar comportamientos de sistemas complejos ante situaciones difíciles de observar en la realidad.

El significado de modelo matemático en filosofía de las matemáticas y fundamentos de las matemáticas es, sin embargo, algo diferente. En concreto en esas áreas se trabajan con "modelos formales". Un modelo formal para una cierta teoría matemática es un conjunto sobre el que se han definido un conjunto de relaciones unarias, binarias y trinarias, que satisface las proposiciones derivadas del conjunto de axiomas de la teoría. La rama de la matemática que se encarga de estudiar sistemáticamente las propiedades de los modelos es la teoría de modelos.





UNIDADES EN EL SISTEMA INTERNACIONAL.



Las siete unidades básicas del SI

Sistema Internacional de Unidades, también denominado Sistema Internacional de Medidas, es el nombre que recibe el sistema de unidades que se usa en casi todos los países.
Es el heredero del antiguo Sistema Métrico Decimal y por ello también se lo conoce como "sistema métrico", especialmente por las personas de más edad y en las pocas naciones donde aún no se ha implantado para uso cotidiano.Las unidades del SI constituyen referencia internacional de las indicaciones de los instrumentos de medición, a las cuales están referidas mediante una concatenación interrumpida de calibraciones o comparaciones.











UNIDADES DIMENSIONALES.


También conocido como análisis dimensional es una herramienta que permite simplificar el estudio de cualquier fenómeno en el que estén involucradas muchas magnitudes físicas en forma de variables independientes. Su resultado fundamental, el teorema de Vaschy-Buckingham, permite cambiar el conjunto original de parámetros de entrada dimensionales de un problema físico por otro conjunto de parámetros de entrada adimensionales más reducido. Estos parámetros adimensionales se obtienen mediante combinaciones adecuadas de los parámetros dimensionales y no son únicos, aunque sí lo es el número mínimo necesario para estudiar cada sistema. De este modo, al obtener uno de estos conjuntos de tamaño mínimo se consigue:
  • Analizar con mayor facilidad el sistema objeto de estudio
  • Reducir drásticamente el número de ensayos que debe realizarse para averiguar el comportamiento o respuesta del sistema.




Finalmente, el análisis dimensional también es una herramienta útil para detectar errores en los cálculos científicos e ingenieriles. Con este fin se comprueba la congruencia de las unidades empleadas en los cálculos, prestando especial atención a las unidades de los resultados.